Fallback Solution for a Low-Voltage Regulator Control using Artificial Neural Networks

dc.contributor.affiliationTU Kaiserslautern
dc.contributor.affiliationPfalzwerke AG
dc.contributor.affiliationTU Kaiserslautern
dc.contributor.authorMa, Haiyan
dc.contributor.authorLang, Stefan
dc.contributor.authorWellßow, Wolfram H.
dc.contributor.countryGermany
dc.contributor.countryGermany
dc.contributor.countryGermany
dc.contributor.detailedauthorma, haiyan, TU Kaiserslautern, Germany
dc.contributor.detailedauthorLang, Stefan, Pfalzwerke AG, Germany
dc.contributor.detailedauthorWellßow, Wolfram H., TU Kaiserslautern, Germany
dc.date.accessioned2019-12-19T18:20:57Z
dc.date.available2019-12-19T18:20:57Z
dc.date.conferencedate7 - 8 June 2018
dc.date.issued2018-06-07
dc.description.abstractWith the increase of renewable generation, violations of voltages or thermal limits are more likely to happen in particular in rural distribution networks. Instead of cost intensive grid expansions, other measures can be applied, such as transformers with on-load tap changers, voltage regulators or a novel regulator for power flow control in meshed grids. Depending on their control targets, these devices use remote measurement data, which are transferred by a communication network. However, in case of communication faults, the control processes are affected. A fallback solution using artificial neural networks is presented in this paper for estimating regulator tap positions and missing measurements. Simulation results show that the proposed solution is reliable and accurate.
dc.description.conferencelocationLjubljana, Slovenia
dc.description.conferencenameCIRED 2018 Ljubljana Workshop
dc.description.openaccessYes
dc.description.peerreviewedYes
dc.description.sessionNetwork integration, control concepts and operations
dc.description.sessionid3
dc.identifier.isbn978-2-9602415-1-8
dc.identifier.issn2032-9628
dc.identifier.urihttps://www.cired-repository.org/handle/20.500.12455/1250
dc.identifier.urihttp://dx.doi.org/10.34890/413
dc.language.isoen
dc.publisherAIM
dc.relation.ispartProc. of CIRED 2018 Ljubljana Workshop
dc.relation.ispartofseriesCIRED Workshop Proceedings
dc.titleFallback Solution for a Low-Voltage Regulator Control using Artificial Neural Networks
dc.title.number0237
dc.typeConference Proceedings
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CIRED 2018 Ljubljana WS - 0237 - 20727.pdf
Size:
911.56 KB
Format:
Adobe Portable Document Format