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ABSTRACT 
Automated detection of EVs from smart meter data can 
provide important insights for DSOs about spatiotemporal 
EV charging patterns. However, smart meters typically 
provide only hourly measurements of consumption while 
most load disaggregation techniques require at least 
minute level data. We use machine and deep learning 
methods to detect EV signatures in hourly smart meter 
data. Models are trained and evaluated on labelled data, 
before being tested on unlabelled field data. While 
balanced models catch about 75% of EVs at false positive 
rates of 35%, tuned models detect up to 90% of EVs with 
10% false positives. When using models to detect EVs on 
unlabelled Norwegian smart meter data, detections are in 
line with EV fractions from the national registry as well as 
expected spatiotemporal patterns. However, models may 
be confused by baseline consumption patterns. Collection 
and inclusion of labelled EVs is therefore the next step. 

INTRODUCTION 
Norway is among the countries with the highest per-capita 
ownership of electric vehicles (EVs) with further increases 
projected in the coming decade. By 2019, Norway will also 
complete the national roll-out of smart meters to all 
electricity customers. While the meters sample three-phase 
voltage as well as active and reactive power every 10 
seconds, technical and regulatory constraints require 
aggregation of measurements into hourly blocks. 
 
By establishing a method for distribution system operators 
(DSOs) to use smart meter data to detect charging patterns 
of existing EVs, the affected geographical areas, and their 
demand, DSOs can cheaply and readily obtain insights to 
support future planning and operation of their grids. 
 
Depending on local energy consumption habits, detection 
of EVs may be as simple as observing extended periods (a 
few hours) of kW level demand [16]. If, however, the 
baseline household energy consumption is already high 
(such as in Norway or the US), extraction of EV signatures 
from hourly demand measurements becomes an exercise 
in Nonintrusive Load Monitoring (NILM) [1,2,3]. While 
there exists a rich literature of NILM methods for high 
frequency (kHz) sampling [4,14], more recent efforts have 

begun to focus on disaggregation at low (seconds) 
sampling rates [5,6,7,10]. Effort at very low rates (minutes 
to hours) is sparser [8,9]. 
 
The problem of locating charging EVs may also be recast 
as a detection problem. In this guise, templating methods 
operating over a range of sampling frequencies have been 
explored [11,12,13], although these require libraries of 
charge profiles. This can be sidestepped through machine 
learning and deep learning approaches where signatures 
are inferred automatically [10,15]. 
 
In this contribution, we use a publicly available labelled 
dataset of electricity consumption, downsample it to very 
low sampling rates (hourly), evaluate the capability of a 
variety of machine learning models to detect EV charges, 
and attempt to detect EVs in unlabelled data. In order, we 
describe data sources, summarize the models and 
evaluation metrics, and assess performance on the labelled 
dataset. Afterwards, we explore how models perform 
when detecting EVs in Norwegian smart meter data and 
address difficulties of such a model transplantation. 

DATA SOURCES 
Our goal is to develop a model that can detect charging 
EVs in the Norwegian grid. Unfortunately, no labelled data 
of electricity consumption exists in Norway. Therefore, we 
use two different datasets – (a) the Pecan Street Dataport 
set of labelled consumption data [17], and (b) electricity 
consumption measurements from smart meters provided 
by the Norwegian DSO Eidsiva. 

Pecan Street Dataport (US, Labelled) 
This dataset consists of second-level measurements of 
household active power including submetering points for 
electric vehicles. To simulate smart meter conditions, we 
downsample the data to hourly resolution. Geographically, 
the dataset covers houses in the continental United States 
(primarily Texas, Colorado, and California). We use 
measurements from 81 households with EV submeters and 
collected data in the period from January 1st to December 
31st in 2017. Ten of these households had no EV charging, 
while the rest had between 20 and 712 such events. To 
evaluate model performance, we use data from the first 
five months of 2018. In this interval, 41 of the houses from 
the training set are also present. 
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Eidsiva Smart Meter Data (Norway, Unlabelled) 
This dataset consists of hourly total power usage data from 
116'679 customers for between two years and a few 
months. We have used data from one week in April 2017 
and one week in April 2018. The location of every 
customers' nearest electrical substation is known. There 
are 5412 substations in total and those substations with 
five or fewer customers were excluded for privacy. 
 
For the weeks in 2017 and 2018, data from 16'019 and 
103'244 residential households is available. The data is 
unlabelled (we do not know whether EVs are charging), 
but the number of EVs registered in the area per December 
31st, 2017 is known. 

MODELS & METRICS 

Models 
Three different models have been implemented, one using 
a matched filter and two using neural networks – a 
convolutional neural network (CNN) and a recurrent 
neural network (RNN). We also implemented a stack that 
combines the above by way of logistic regression. 
 
We found that both relative and absolute magnitude is 
important when discovering charging events, and therefore 
did not normalize the data. Both neural networks were 
trained on different window lengths, and the length giving 
the best results was chosen. Models were trained and tested 
on 90% of the data, while 10% was held out for evaluation. 
 
For the matched filter model, a library of signatures was 
inferred from the measurements of EVs in the training 
dataset. The signatures were first partitioned according to 
their length, giving 6 groups of 2 to 7-hour long charging 
signatures (one-hour signals were excluded). We then used 
k-means to yield clusters of similar signatures for each 
signal length. The number of clusters giving the best 
clustering results was 6 (based on the Silhouette score), 
thus taking the average of each cluster gives 6 typical 
charging signatures for each signal length, giving 42 
typical charging signatures in total. 

With signatures available, a matched filter now attempts to 
locate them in the consumption data. Specifically, the 
procedure computes the cross-correlation between the 
charge signatures and the consumption signal. If the cross-
correlation exceeds some thresholds, an EV detection is 
marked. This is illustrated in Figure 1. 
 
The CNN also slides filters across the signal, but instead 
of predefining the filters, they are learned during training 
(where filter weights are adjusted). The input data to the 
CNN is the total consumption signal divided into 
overlapping time slices of 24 hours. To increase the 
generality of the dataset, a synthetic dataset was created to 
complement the original data. In periods with no charging 
events, an EV charging signal was added at a random point 
in these time periods with a probability of 50%. 
 
RNNs include previous outputs in the next prediction. The 
model used in this work consists of long short-term 
memory (LSTM) layers. The input data to the RNN 
consisted of time series which only contained real data 
(and no synthetic charging events as for the CNN), in 672-
hour sequences (28 days). 
 

Performance Metrics 
After training, models accept a smart meter timeseries as 
input and return a probability of an EV charging at each 
sample. To assess classifier performance, we hold out a 
test set, ask the classifiers to make predictions on this set, 
and use the known ground truth to determine how often the 
classifier predicted (in-)correctly. 
 
The data has 26 times fewer samples without charging EVs 
than samples with charging EVs. In other words, it is 
imbalanced. In imbalanced sets, evaluation of predictive 
performance using metrics like accuracy or ROC curves 
are difficult to interpret (the large number of true negatives 
tends to exaggerate performance). 
 
Measures like precision and recall do not use true 
negatives ("no EV is charging") but focus on performance 
of the model with respect to its capacity for detecting true 

 
Figure 1: Illustration of EV detection by matched filtering. The upper panel shows a demand time series with two EV charges at the 
30- and 80-hour marks. By matching a library of signatures (“filters”), we calculate the cross-correlation (bottom panel) indicating 
how similar the consumption signal is to the charge signature. The peaks coincide well with the charging event 
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positives ("an EV is charging"). Intuitively, recall is how 
likely a positive prediction is to correspond to a true label, 
whereas precision indicates how likely a true label is to be 
predicted positively. Precision and recall are frequently 
combined through the F1 score (their harmonic mean). 
 
As classifiers yield probabilities, we must choose a 
threshold above which the probability is interpreted as a 
charging EV. Intuitively, a higher threshold should only 
keep predictions in which the classifier is very confident 
in (high precision), but this comes at the price of 
potentially missing more EVs (lower recall). By varying 
the threshold, precision and recall can be traded-off. We 
can generate precision-recall curves (as well as calculate 
the average precision) by evaluating these metrics over a 
range of thresholds. Note that even if the classifier is very 
confident in a prediction, it may not be correct. If a 
classifier routinely misclassifies predictions at the highest 
confidence, precision drops to zero at high thresholds.  
 
We first evaluate the performance of the different modes 
on labelled data. Afterwards, we use the stacked model to 
detect EVs in unlabelled data in Norway, but only ask 
whether a given this household owns (regularly charges) 
an EV owner. A customer is labelled if the model predicts 
at least seven hours of EV charging during the week in 
2018. We then compare the number of predicted EV 
owners with the actual number of owners in the area. We 
also examine the geographical location of the predicted 
charging events (at the level of the secondary substation). 

PERFORMANCE, LABELLED DATA 
Figure 2 shows the precision-recall curves as well as F1 
scores for four different predictive models. Together with 
the average precision and maximum F1 scores (see Table 
1), we find the following: 
 
1. Except at very small recall (high thresholds), the filter 

model performs worst. This indicates that the manual 

feature extraction step is inferior to allowing neural 
networks to select features. 

2. The CNN and LSTM have similar maximum F1 
scores, but at different thresholds. However, the CNN 
rapidly loses precision at high thresholds (where recall 
is low). This means that the CNN tends to be wrong 
with its most confident predictions. While the LSTM 
and filter models do not suffer from this problem, it 
does bleed into the stack model. 

3. Overall, the stack performs best, except at high 
thresholds, where the overconfidence of the CNN 
bleeds in. Here, the LSTM outperforms all models. 

4. In general, if misdetections at high thresholds can be 
tolerated, the model stack is the best model. If 
correctness at high thresholds is essential issue, the 
LSTM model should be preferred. 

 
To understand the implications of these findings in terms 
of how many charging EVs such models will detect, we 
must examine recall and precision separately. The 
maximum F1 score of the stacked model (0.70) occurs at a 
threshold of 0.22. Here, the precision is 0.65 and the recall 
0.75. In other words, using this classifier on unlabelled 
data, we expect it to discover about three in four time slots 
of a charging signal, and that about one in three slots 
predicted as corresponding a charge are false positives. 
 
If we optimize for precision or recall separately, we can 
improve these numbers. If confidence in the discovered 
signals trumps the cost of missing some, we can reduce the 

 
Figure 2: Precision-recall curves (left) and F1 scores over all thresholds (right) for the three models as well as the stack (see legend).  

Table 1: Summary of model performance parameters. 

Model Maximium 
F1 Score 

Average 
Precision 

Filter 0.45 0.40 
CNN 0.67 0.58 
LSTM 0.67 0.68 
Stack 0.70 0.71 
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false-positive probability to almost one in ten. Conversely, 
if we want to capture as many signals as possible, models 
can be tuned to discover nine out of ten signals. 
 
Models were assessed on measurements collected from the 
same houses as those used to train the models (although at 
a later time). This induces a bias which may be reduced by 
withholding houses for the test set. However, as all houses 
see the same EV charge signatures (almost all cars in the 
data were of two makes), there was little to generalize on 
(besides the baseline consumption). For the CNN models, 
we attempted to push models towards better generalization 
by introducing synthetic charges. Unfortunately, we 
suspect this may be causing the overconfidence (precision 
collapsing at high thresholds). 

PERFORMANCE, UNLABELLED DATA 
We now execute our models on unlabelled data. To 
develop some understanding of detection performance, we 
(a) compare to publicly available data on EVs, and (b) 
explore charging patterns on a map. 
 
Figure 3 shows the percentage of predicted EV owners 
versus the actual percentage of EV owners for various 
municipalities. Usually, the predicted percentage of EV 
owners is close to the actual percentage, but some 
municipalities have large errors. The municipality with the 
largest discrepancy is Hamar, which the principal city in 
the county. There are two municipalities in which our 
models do not detect any EVs. Both are rural areas. 
 
Overall, we identified four key reasons why the numbers 
of detections are out of step with the aggregate numbers 
from the vehicle registry, viz. 
 
1. Hamar is home to many companies, which may own 

EV fleets that may not necessarily charge in Hamar. 
Similarly, leasing companies may have registered 
EVs in Hamar that are used in other municipalities. 

2. Households have individual meters, even in large 
apartment complexes. However, some complexes 
have common charging solutions which typically 
have a specific metering point. In this case, EVs are 
detected on the common charging point. Similarly, for 
businesses with charging stations for their own EVs, 
only a subset of EVs may be detected. 

3. Households with several cars per metering point 
would not be processed correctly. 

4. Hamar (and other urban areas), have been left out for 
the last part of the AMS rollout due to the anticipated 
technical challenges. Metering data from such urban 
areas may also have quality issues due to early 
operations challenges. In other words, the dataset may 
be incomplete. 

 
Figure 4 shows a map of detected EV charges for the week 
in 2018 (at secondary substation level). Overall, the 
charging patterns coincide with expectations – more 
Saturday evening charges in the cabins, more Tuesday 
night charges in the more urban areas. Note, however, that 
it is entirely possible that the model merely picks up on 
typical consumption patterns of the general public – cabin 
areas consuming more electricity on the weekend.  
 
Finally, we note three key challenges when transplanting 
models across geographies. Firstly, there are differences in 
electricity usage habits (Norway uses electric heating the 
winter, the US uses AC units in the summer). Secondly, 
there are difference car park composition (models sold in 
the US are not used on Norway and vice versa). Thirdly, 
the overall percentage of EVs in the datasets differ. All 
these issues must be addressed carefully.  
 
Without definite ground-truth (labelled data) in Norway, 
however, none of the above issues can be addressed and 
quantified adequately. Therefore, collection and analysis 
of such a dataset should be a priority. 

CONCLUSION 
To support future network and operations planning for 
Norwegian DSOs, we have addressed two questions in this 

 
Figure 3: Predicted vs. actual percentage of registered EVs for 
different municipalities in Hedmark county.  

Figure 4: Heatmap of EV detections in Hedmark county for two 
days. We indicate urban and rural areas. 
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contribution. Firstly, can hourly smart meter data be used 
to detect charging EVs? Secondly, can a model trained on 
data from the continental United States be transplanted to 
give accurate predictions in Norway?  
 
We find that detection of EVs from smart meter data is 
feasible. Balanced models can detect about 75% of 
charging events, but with a false positive rate of about 
35%. Models tuned to maximize either precision (be 
certain about detections) or recall (find as many EVs as 
possible) can achieve false positive rates of 10% and 
successfully locate 90% of charging events. 
 
Application of models to unlabelled data, on the other 
hand, is challenging. While the amount of EV detections 
is roughly in line with the national registries and matches 
up with expected spatiotemporal patterns, models may be 
confusing EVs with normal household activities. To 
properly assess whether models can be transplanted, 
ground-truth must be collected to establish a labelled 
dataset of Norwegian consumption data. 
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